Lawrence Livermore Laboratory

Singte Particle Behavior in Plasmas

Brendan McNamara

March 10, 1977

This paper was prepared for Proceedings of the College on Theoretical and Computational Plasma Physics, International Center for Theoretical Physics; Trieste, April 1977

This ls a preprint of a paper intionded for publication in a jodinal or procesdings. Since changes may be made
 without the permisgion of the author.

Single Particte Behavfor in Plasmas
 Brendan McNamara
 Lawrence Livermore Laboratory, Iivenmore, CA

Introduction
One cannot expect to memorize the content of such an intense course as this and considerable emphasis has been placed on collecting and cataloging key results and principal references. The behavior of single particles in a plasma is basic to the rest of the course, but not elementary. The subject is well covered in many text books, and the purpose of this paper is merely to collect, in a brief forn, the essential formulae and mathematical methods.

The paper follows the history of a neutral atom or molecule ints a plasma - ionization, dissociation, radiation, - until it becomes a set of charged particles moving in the electromagnetic fields of the plasma systen. The various useful forms of the method of ayeraging are displayed and appled to calculation of constants of motion. The breakdom of these constants is discussed along with some of the iniplications for fusion systems.

[^0]Thin report was prepered as in acrount of wots
apestored by the Uutied Slater Cowe mment. Neither the
Unled Suter not the "nited Stutet Deputimedt of
Emag, nor any of thetr employeth, nor say s' the ir
contrations, mubcontraction, of thel employetch, tipket
Inbility of sepponsiolity for the acturacy, complets nets
or un fulaner of ary infonmation, oppastur, product or
procen dicelowd, or repretents chat jof ure wiold not
infinge privetely owned tifhs.

3. Motion of Charged Particles in Electromagnetic Fields

Charged particle motions are generally complicated and, in designing fusion devices, one tries to simplify the motions by use of symetries or constants of the particle motions to provide confinement within the device. The equations of motion in an electric field $\vec{E}(\vec{x}, t)$ and magnetic field $\begin{gathered}\text { 它 }(x, t)\end{gathered}$ are, in Gaussian units,

$$
\begin{equation*}
\frac{d \vec{X}}{d t}=\vec{V} \quad, \quad \frac{d \vec{V}}{d t}=\frac{e}{m}\left(\vec{E}+\frac{\vec{V} \times \vec{B}}{t}\right) \tag{3.1}
\end{equation*}
$$

where \vec{X} is the particle position and \vec{V} its velocity. The equations obviously separate into motion parallel and perpendicular to \vec{B}. The constant $\vec{E} \& \vec{B}$ fields the equations are trivally solved to give

$$
\begin{align*}
& X_{u}=X_{u 0}+V_{n 0} t+\frac{q}{2 m} E_{n} t^{2} \\
& V_{1}=V_{00}+\frac{e}{m i} E_{11} t \tag{3.2}\\
& \dot{X}_{ \pm}=\nabla_{0} t+\vec{\rho}
\end{align*}
$$

where the electric drift velocity is $V_{D}=\frac{\vec{E}}{B^{2}} \vec{G} C$ and \vec{D} is a circular motion in the drift frame with freguency, $\Omega=e \mathrm{~A} / \mathrm{m}^{2}$ and Lammr radius $p=v_{\perp} / n$.
It is important to notice that the drift-velocity is the same for fons arid electrons, being independent of mass and charge, but that the cyclotron frequencies and gyroradif are not. The electric field only accelerates particle parallel to \vec{B} and because electrons respond so quickly it is difficult to maintain a constant E_{11}, except in a potential well geinerated by a collection of (magnetically trapoed) ions. He assume $E_{11}=0$ for the moment.

In a real device we need to understand the motion of particles in electromagnetic fields which vary on time scale t and space scajes L_{\perp}. L_{u} - In the case where $\Omega \pi, p / L_{1}, p / L_{12}$ are all $O(J)$ orily a high degree of symmetry will save you from needing a computer, but otherwise there are various fons of perturbation theory which give approximate solutions. The most useful cases will be discussed.

1) Small Larmor Radius, Slow time Scales.

The case with $\Omega \tau \geqslant 1$. $\rho / L_{1}, ~ \rho / L_{n} \ll 1$ is of the most interest. Since the gyrofrequency is large it seams appropriate to average out htis rapid motion and develop equations for the mean drift of the particle. As the particle moves its local gyrofrequency will change; consider the Taylor series expansion of the function

$$
\begin{align*}
x & =x_{0} \cos \left(\Omega_{0}+E \Omega\right) t \tag{3.3}\\
& =x_{0} \cos \Omega_{0} t+x_{0} t \in \Omega \sin \Omega_{0} t-\frac{x_{0}}{2}(t \in \Omega)^{2} \cos \Omega_{0} t+\ldots
\end{align*}
$$

The suecessive terns are not purely ascillatory, but are 'secular' with coefficients $O\left(t^{n}\right)$. The radius of convergence of the series is $0\left(\Omega_{0}^{-1}\right)$ and so simple Taylor expansion of the equation of motion is of little value and we prefer the method of averaging which, although it is only asymptotic, has a range $0\left(\frac{1}{c \Omega_{0}}\right)$ or better. The method is required in many applications and so is worth giving here in detail.

The original equations of motion must be nomalized and transformed ($\vec{x}, \vec{v}+\vec{y}, v$) to display the phase angle v of the gyromotion as follows (HcKamara and Whiteman, 1967).

$$
\begin{align*}
& \rangle_{t}=\varepsilon \vec{g}\left(Y_{, v}\right) \tag{3.4}\\
& v_{t}=1+\varepsilon f\left(Y_{s} v\right)
\end{align*}
$$

where ${ }_{\mathbf{g}}$ and f are periodic in $v_{\text {, period }} \tau_{0}$, and ε is the small expansion

The equations (3.8, 3.9) are sufficient to generate a power series expansion for the transformation \vec{Z} and the averaged driving terms $\overrightarrow{\boldsymbol{H}}$. The result is convenientiy written down in terms of the integrating and averaging operators ($(u,-)$ defined as follows: for any function f, periodic in v,

$$
\begin{align*}
& \bar{f}=\int_{0}^{v}(f-\bar{f}) d v^{0} \tag{3.10}\\
& \bar{f}=\frac{1}{\tau_{0}} \int_{0}^{\tau_{0}} f_{v}
\end{align*}
$$

Notice that f contains a constant of integration or initial condition and so $\tilde{\bar{f}}=0$ but $\tilde{\bar{f}} \neq 0$. Without further ado, we write the transformation to $0\left(e^{3}\right)$ as

The average coordinates \vec{Z} have the equation of motion
where $\vec{a}=(1,0,0, \ldots, 0)$. Notice that the phase $\dot{\phi}$ does not appear on the right of this equation, as desired. There are many sescriptions of the misinod of averaging in the text baoks but equations (3.11, 3.12) are the answer for the plasma physicist. In celestial mechanics one is usually interested in $\$$ hiṭh order of accuracy and so requifes many orders of the expansion. The best method is due to Ceprit (1969) and is well dascribed In Nayfeh's book (1973). The method uses a generating function or Lie transform, $\ddot{W}(\vec{y})$, which allows the manipalations to be computerized on an algebraic tranipulator. This generating function approach also allows any function of the or variables to be expanded directly in the new variables.

We observe that the original problem has merely been transfo:med to a sfapler one which still musi be solved, equations (3.12). As a final answer,
slower period oscillation. The same technique can be used to average over this oscillation and reduce the system still further.

3.2 High Frequency Fields

In the case when $\Omega_{\tau} \ll 1, \tau v / L \ll 1$, the equations of motion can be averaged over the high-frequency field variation. In the non-relativistic case we get

$$
\begin{equation*}
m \frac{d \vec{V}}{d t}=e \bar{E}+\frac{e}{c}(V \times \vec{B})-\frac{e^{2}}{2 \pi \omega^{2}} \overline{\nabla \vec{E}^{2}} \tag{3.16}
\end{equation*}
$$

The high frequency part of the field appears as a potential $u=\left(e^{2} / 2 \pi_{\omega}^{2}\right) \overline{\tilde{E}^{2}}$. independent of the sign of the charge. This additional force is of prime tmportance in laser fusion. When \bar{E}, \bar{B} vary slowly on the scale of the lamor period the method of averaging can be applied, as before.

4. Adiabatic Invariants

The six equations of motion have six constants of the motion, namely the fnitial conditions on the motion. These are in genera) useless for making further dediuctions and we seek a better choice of constants in systems with sufficient symmetry. A typical example for a charged particie in a time independent field is the total energy or the fiamilitonian

$$
\begin{equation*}
H=\frac{1}{2 m}\left(\phi-\frac{e}{c} A\right)^{2}+e \phi \tag{4.1}
\end{equation*}
$$

If the fields $\vec{B}=\nabla \times \vec{A}, \vec{E}=-\nabla \phi$, are independent of a coordinate, 0 , then the corresponding cauonical momentum, P_{θ}, is a constant of the motion. Such constants confine a particle to a surface in phase space which. If we are lucky or ctose the configuration carefully, will tonfine
where G_{n} is independent of q_{1}. We finsily require that J_{n} be periodic in q_{1} and so the average of the Poisson bracket must be made to vanish by choice of J_{0} and the integration constants G_{n} :

$$
\begin{equation*}
[\sqrt{n-1 \times n}]=0 \tag{4.7}
\end{equation*}
$$

The first equation is

$$
\begin{equation*}
\left[\overline{J_{0}, \bar{\Omega}}\right]=0=\left[נ_{0}, \bar{n}\right] \tag{4.8}
\end{equation*}
$$

since J_{0} is independent of q_{j}. The obvious non-trivial solution is

$$
\begin{equation*}
J_{0}=J_{0}(\bar{\Omega}) . \tag{4.9}
\end{equation*}
$$

The series can be developed in terms of the Poisson bracket operator, the averaging operator, and the indefinite integrator

$$
\begin{equation*}
\hat{\mathbf{j}}=\int(\mathbf{N}-\bar{J}) d q \tag{4.10}
\end{equation*}
$$

and the general answer, correct to $0\left(\varepsilon^{2}\right)$ is

$$
\begin{align*}
J & =\bar{\Omega}+c[\overline{\hat{n}}, \hat{\lambda}]+\frac{e}{2}[\overline{\hat{\hat{n}}, \Omega}] \\
& +\varepsilon^{2}\left[[\bar{n}, \hat{\Omega}]+\frac{1}{2}[\hat{\hat{n}, \hat{\Omega}]}, \Omega]\right. \tag{4.11}\\
& \left.+\frac{\varepsilon^{2}}{3}[\overline{\hat{n}[\hat{\Omega}, \Omega}]+\frac{2 \varepsilon^{2}}{3}[\overline{\hat{\Omega},[\hat{\Omega}, \bar{n}}]\right]+0\left\langle\varepsilon^{3}\right\}
\end{align*}
$$

The most general Hamiltonian for which we have developed such an adiabatic invariant is of the form

$$
\begin{align*}
H & =\psi\left(c a_{2}, \ldots, \varepsilon q_{h}, P_{1}, \varepsilon P_{2}, \ldots, c P_{N}, \varepsilon t\right) \tag{4.12}\\
& +c \Omega\left(q_{i}, P_{j}, c t\right)
\end{align*}
$$

In terms of lize fatation frequency $\lambda=3, / \partial^{P} ;$ and the "slow" bracket $\}$
$\vec{A}=-\vec{b} \cdot \vec{\nabla}$, the field line curvature.

Hottce that μ, contains V_{\perp} and the oscillates on the cyclotron period. When the particles are trapped in a magnetic mirror field to a particular region of a field line we have to introduce the sign, $\sigma= \pm 1$, of the parallel velocity. The bounce motion, at frequency ω_{b}, can be averaged to yield a second invariant provided $\Omega \gg \omega_{b} \gg\left|w_{0} / L\right|:$

$$
\begin{equation*}
J=\oint\left(2\left(\varepsilon-\left(\mu_{0}+\frac{m}{e} \mu_{1}\right) B\right)\right)^{\frac{1}{2}} d s=\sigma \int_{S_{0}}^{S} \frac{d S}{9} V_{0} * \nabla_{0}+0\left(\frac{r_{L}}{L}\right)^{2} \tag{4,16}
\end{equation*}
$$

where

$$
J_{0}=\int 2\left(\varepsilon-\mu_{0} B\right)^{\frac{1}{2}} d \varsigma
$$

Finally, if the fields are allowed to change very slowly in time over a period much longer than the drift of a particle around a J surface then the energy ε is no longer a constant of motion on this time scale. The total flux Φ through a drift surface, $\mathrm{J}=$ const, is another adiabatic invariant:

$$
\begin{equation*}
\phi=\oint_{J=\text { const }} a d B \tag{4.17}
\end{equation*}
$$

where (a, s) are the field line coordinates, $\vec{B}=V_{\perp} \times \nabla B$.
For a plasma to be in equilibrium in a given static magnetic field the plasma distribution function must be a function of the constants of motion, $f=f\left(\varepsilon_{2} \mu, J\right)$. This statement will be developed better in the talk on mirror machines.

5. Analogy with Magnetic Field Structures

As an aside to the mam business of particle motions the structure of magnetic fie?ds can be analyzed in the same fashion. Compare the general invariants for divergence free magnetic field and a Hamiltonian systen, namely the flux 4 thr jugh an arbitrary curve C which always passes through the same set of field lines and the action integral J around an arbitrary loop

The solution can be written down easily from eq. (4.11):

$$
\begin{equation*}
\psi=\overline{b_{x}^{\top}}-\overline{b_{y}^{+}}+c \overline{b_{x} 6_{y 1}}+c\left[\overline{b_{x}^{+}}-\overline{b_{y}^{+}}, \hat{b}_{x}^{+}-\hat{b}_{y}^{4}\right]+0\left(c^{2}\right) \tag{5.8}
\end{equation*}
$$

In the stellarator configuration it is csually assumed that $\bar{b}_{x}, \overline{b_{y}^{*}}$ are 0 (c) and so the form of the surfaces is determined by

$$
\begin{equation*}
\psi=c \bar{b}_{x} \hat{b}_{y y} \tag{5.9}
\end{equation*}
$$

This work is one illustration of how to take a conservative ($\gamma \cdot \mathbf{t}=0$) system and express it in Hamiltonian form and shows hom the discussion of particle orbits relates to magnetic surfaces. Typical magnetic surfaces in an $L=3$ stellarator are shown in Fig. 1. (A. Gibson 1967).

6. Resonant Effects on Adiabatic Invariants.

The theory of invariants so far described shows how to average over a single frequency. In systems where there is more thar cne fundamentai frequency or where the fundamental varies : i phase space it is pos'ible for beats between the various frequencies to produce a slow variation. Tems like $\cos \left(\mathrm{nd}_{1}\right.$ - $\left.\mathrm{H}_{2}\right) q_{\text {. }}$ arise in the series expansions and when integrated have a denoninator ($n m_{1}-m_{L_{2}}$) which could be very small for large values of n.m. The series can only be shown to be asymptotic and one sirply has to stop the expansion when a small denominator arises. If this hafgens in the second or third term then the whole procedure must be nodified.

A nice example (Taylor and Laing 1976) is of a charged particle in a uniform magnetic field interacting with an electrostatic plasma wave. The Hamiltonion is

$$
\begin{equation*}
H(\vec{r}, \vec{p})=(\vec{p}-m x x \hat{y})^{2} / 2 \pi+e \phi_{0} \sin \left(k z+k_{2} x\right) \tag{6.1}
\end{equation*}
$$

surfaces have broken up, leaving only islands around certain fixed points of the phase plent. laeger and Lichtenberg have examined a number of simpler examples and distinguish two possible ways in which the resonant surfaces can break up. In the case of an exact resonance a 20 oscillator problem can be reduced to the averaged Hamiltonian

$$
\begin{equation*}
\bar{H}=K+=\bar{\Omega}\left(Q_{2}, K, P_{2}\right)+O\left(\varepsilon^{2}\right) \tag{6.7}
\end{equation*}
$$

where $K=\tau H-\varepsilon \tau J$ is the canonical invariant conjugate to Q_{1} in sec. (4). The remaining motion, in q_{2}, P_{2} may have an elliptic fixed point $\left(\overline{0}_{2}, \bar{p}_{2}\right)$, where

$$
\begin{equation*}
\frac{\partial \bar{H}^{\dot{C}}}{\partial Q_{2}} \cdot 0 \frac{\partial \widetilde{H}_{H}}{\partial P_{2}}=0 \tag{6.8}
\end{equation*}
$$

Expanding about this point we get the Hamiltonian for the loca? motion

$$
\begin{align*}
& \delta Q_{2}=Q_{2}-\bar{Q}_{2}, \delta P_{2}=P_{2}-P_{2}: \\
& \left.\quad \bar{H}=K+\varepsilon \bar{\Omega}\left\langle\bar{Q}_{2}, K, \bar{P}_{2}\right\rangle+\varepsilon \frac{\delta Q_{2}}{2}\left(\frac{\partial^{2} \overline{\bar{L}}_{1}}{\partial Q_{2}^{2}}\right)+\varepsilon \frac{\delta \bar{P}_{2}^{2}}{2}\left(\frac{\partial^{2} \bar{\Omega}}{\partial P_{2}^{2}}\right)+O \delta^{3}\right) \tag{6.9}
\end{align*}
$$

The frequency of these oscillations is clearly $O(\epsilon)$ and the ratio of the semianes of the orbits in the $\left(\delta \mathrm{Q}_{2}, 6 \mathrm{P}_{2}\right)$ phase plane is

$$
\begin{equation*}
\mathrm{R}=\frac{\left(\delta \mathrm{P}_{2}\right)_{\text {MAX }}}{\left(\delta Q_{2}\right)_{\text {MAX }}}=0\left(\left(\frac{\partial^{2} \bar{\Omega}}{\partial 0_{2}^{2}}\right) /\left(\frac{\partial^{2} \bar{\Omega}}{\partial P_{2}^{2}}\right)\right)^{1 / 2} \tag{6.10}
\end{equation*}
$$

If a high hamonic of these oscillations resonates with the primary oscillations in the (K, Q_{f}) phase space then the invariant is altered just as described above for the magnetized particle in a wave. That example was more complicated in that the resonance between the ϕ and z oscillations depended on p_{z}. The best we can do with the invariant is to write the Hamiltonian as

$$
\begin{equation*}
\bar{H}=\psi\left(1, \dot{P}_{2}\right)+\varepsilon \bar{\Omega}\left(I, P_{2}, Q_{2}\right)+O\left(\varepsilon^{2}\right) \tag{6.11}
\end{equation*}
$$

The expansice about an elliptic point in this case gives
of the series is important. There are cases of simple dymamical systems where an exact constant can be found which, on expansion in the appropriate small parameter gives the adtabatic series. In general, the best that can be done is'to show that the series is asymptotically convergent: The general fnvariant J , of eq. (4.11), summed to n terns can be shown to vary like

$$
\begin{equation*}
\frac{d j}{d t}^{[n]}=o\left(c^{u+1}\right) \tag{7.1}
\end{equation*}
$$

A key assumption in the whole development was that J could be expanded in a power series in E. which a priori eliminates small non-expandable terms like $a e^{-b / \varepsilon}$. The magnetic moment, $\mu_{\text {, }}$ of a particle displays just such jumps at each bounce of the particle in a mirror machine (Cohen et. al., Hastie et. a1.). This is eastly deduced by examining the change in μ_{0} over one bounce. The exsct equations of motion give

$$
\begin{align*}
\frac{d \mu_{0}}{d t} & =-\frac{v_{t}}{2 B}\left(v_{\perp}{ }^{2}+2 v_{11}{ }^{2}\right) \rho_{\perp} \cos \psi+\frac{v_{n}^{2}}{B} v_{L} \rho_{\mathrm{J}} \cos \Psi_{J} \\
& =\frac{v_{11}}{B}\left[u_{0} \frac{\partial B}{\partial s}+\vec{v}_{\perp} \cdot\left(\vec{v}_{\perp}=\nabla\right) \cdot \hat{b}\right] \tag{7.2}
\end{align*}
$$

where

$$
\begin{aligned}
& \cos \#=\left(v_{\perp} \cdot \nabla B\right) /\left(v_{\perp}|\nabla B|\right), \quad \cos \psi_{J}=\vec{v} \cdot \vec{\nabla}_{J} f\left(v_{\perp} \rho_{J}\right) \\
& \overrightarrow{0}_{J}=\frac{\vec{\delta} \times(0 \times \vec{B})}{B^{2}} \quad \quad D_{\perp}=\left|\nabla_{\perp} B\right| / B \\
& t=v_{\perp} \cos \bar{\psi} \hat{e}_{1}-v_{\perp} \sin \bar{\psi} \hat{e}_{2}+v_{1} \hat{b}
\end{aligned}
$$

This equation is integrated along a field line, the zeroth order motion of the particie, to give the change in μ_{0} :

$$
\begin{equation*}
\Delta \mu_{0}=\sqrt{2 \mu_{0}} \cdot v^{2} R e \delta \frac{d s}{v_{n}} \frac{\rho_{1} e^{i \psi_{+}+\rho_{j}}}{\sqrt{B}} e^{i \Psi_{j}} \tag{7.3}
\end{equation*}
$$

```
A - Atomic mass T - boumce time
M - Mass z - chsige
M - energy
```

Horice that these results arise from a mon-resonant coupling between the bounce motion and the cycio.ron motion and account for the stochastic motions In phase space when the adiabatic invariant has broken dow. One remaining question is whether or not these exponentially small jumps destroy the finvarfance of i- over a long time stale even in the adiabatic region.

8. Superadfabaticity

This has been fnvestigated by Aamodt and by Rosenbluth for the case of mirror trapped particles in the presence of electrostatic fluctuations near a harmonic of the cyclotron frequency whtch produces similar i, fomps in μ. The key point is that jumps in μ_{0} are periodic in $\psi_{0^{\prime}}$. Let in $_{1}$ be the phase on the nth bounce and μ_{n} the magnetic moment on the prior to the ath scatsering, then (7.6) can be rewritten as

$$
\begin{equation*}
\mu_{n+1}=\mu_{n}+a \sin \psi_{n} \tag{8.1}
\end{equation*}
$$

The particle makes many gyrations between bounces and we need a simple model to describe ψ_{n+1} in terms of ψ_{n} and μ. Following Rosenbluth, leit us consider a simple quadratic variation in field strength so that the cyclotron frequency is

$$
\begin{equation*}
\Omega=\Omega_{0}\left(1+s^{2} / L^{2}\right) \tag{8.2}
\end{equation*}
$$

Constancy of the total energy gives

$$
\begin{equation*}
\frac{1}{2} v_{11}^{2}=\frac{1}{2}\left(\frac{d s}{d t}\right)^{2}+\mu B_{0} \frac{s^{2}}{L^{2}} \tag{8.3}
\end{equation*}
$$

When this condition is met the particle orbits do not diffuse in velocity space due to the non-adiabatic jumps in μ, and the orbits are called "superadiabatic". Numerical calculations by Cohen et. al. show that particle orbits in typical.mirror fields are indeed superadiabatic up to about twice the energy at which the jumps could compete with coulomb scatteriig in a fusion plasma, eqn. (7.8). The adiabatic invariants of a charged particle are indeed approximations to goou constants of the motion.
F. Jaeger, A. J. Lichtenberg, M. A. Liebeman, Plasma Phys. 14, 1073-1100,
(1972). Theory of Electron Cyclotron Resonance Heatíng.

7. Jumps in Invariants

R. Cohen, UCRL-76889 (1976). Submitted to Phys. Fluids.
R. J. Hastfe, G. O. Hobbs, J, B. Taylor, JAEA Conf., Novosibirsk (1971).
J. H. Fodte. Plasma Phys. 14, 543-552 (1972). Honadiabatic Energy Limit

Versus Mirror Ratio in Magnetic-Hell Geometry.
M. A. Lieberman, A. J. Lichtenberg, Phys. Rev. A, 5, 4, 1852-1866 (1971).

Stochastic and Adiabatic Gehavior of Particles Accelerated by Periodic
Forces.
J. E. Howard, Phys. Fluids 14, 11, 2378-2384 (1971).
A. J. Lichtenberg, H. L. Berk, Nuc1. Fus. 15, 999-1005 (1975).
9. Superadiabaticity
R. E. Aamodt, Phys. Rev. Lett. 27, 3, 135-138 (1971).
M. N. Rosenbluth, Phys. Rev, Lett., 29, 7, 408-470 (1972).
${ }^{-1} 1$ his report uras prepared as in suctount of work sponsortd by the United Silles Governmeal Nenther the United Stetet nur the Uaited Stairs Deparimest of Eneriy, nor any of theis ernployees. nor ans of thei contracion, subconifastoti, or There employees. makes any waranty, express or implied. or assumes any legal liabiliyy or responsibility for the accuracy. completencss of usefolness of any information, apparatus. produst of nfoesess disclosed, or repreient that its ase would not iniringe provately-owned rights"

Reference to a company or product name doe: not imply approvil or recommendution of the product hy the I'nversity of Catilumas or the t.S. Depirtinent of Energe io the evilusion of withers that may be sultable

F16. 2 Surface of section plot of $t_{0}+c I_{1}, c=.025$. Teylor and Laing (1976).

Fi6. 4 Mumerical Orbit computations at $\mathrm{E}=.025$ by saith and Raufan (is/6).
2. Ionization of Neutral Atoms and Molecules

It seems likely that the primary heating and fueling of fusion reactors will be by hot neutral injection. The neutral atom or molecule is therefore a starting point for the discussion of the physics of single particle beheifor. A neutral beam injector works by acceTerating fons, say 0^{+}, out of a low temperature plasma, and then neutralizing the fast ions by charge exchange with some suitable gas, say D_{2} :

$$
\begin{equation*}
\mathrm{D}_{2}+\mathrm{O}_{\mathrm{HOT}}^{+} \rightarrow \mathrm{o}_{\mathrm{HOT}}+\mathrm{o}_{2}^{+} \tag{2.1}
\end{equation*}
$$

The hot neutral enters the fusion plasma and can be fonized by the ions or electesns of t'is plasma:

$$
\begin{align*}
& 0^{+}+D+20^{+}+e \tag{2.2}\\
& e+D \rightarrow D^{+}+2 e \tag{2.3}
\end{align*}
$$

or can charge exchange with a hot-ion of the plasma which will produce a hot neutral traveling in a different direction - probably out of the plasma. The measurement and calculation of the cross sections for these and similar reactions if an elaborate process and I do not wish to give a course on Atomic Physics: (one has Just been given at Trieste). However, these cross sections are important to those who wish to compute the behavior of neutral injectors and the buildup and equilibrium of injected pilsmas. Many of these eross sections for the interaction of atoms and molecules of hydrogen, deuterium, and tritium with themselves, electrons, and α-particles have been incorporated in a simple subroutine by C.A. Finan.

Many other such
efforts exist to reduce the relevant data on cross sections, atomic energy

3. Motion of Charged Particles in Electromagnetic Fields

Charged particie motions are generally complicated and, in designing fusion devices, one tries to simplify the motions by use of symetries or constants of the particle motions to provide confinement within the device. The equations of motion in an electric field $\vec{E}(\vec{x}, t)$ and magnetic field $\bar{B}(x, t)$ are, in Gaussian units,

$$
\begin{equation*}
\frac{d \vec{X}}{d t}=\vec{V}, \frac{d \vec{V}}{d t}=\frac{e}{m}\left(\vec{E}+\frac{\vec{V} \times \vec{B}}{C}\right) \tag{3.1}
\end{equation*}
$$

where \vec{X} is the particle position and \vec{V} its velocity. The equations obviously separate into motion parallel and perpendicular to \vec{B}. The constant \mathbb{E} \& \vec{B} fields the equations are trivally solved to give

$$
\begin{align*}
& x_{u}=x_{u 0}+V_{110} t+\frac{g}{2 m} E_{n} t^{2} \\
& V_{n}=V_{n 0}+\frac{e}{m} E_{1 s} t \tag{3.2}\\
& \bar{X}_{ \pm}=\nabla_{0} t+\vec{\rho}
\end{align*}
$$

where the electric drift velocity is $V_{D}=\frac{\vec{E} \times \vec{d}}{B^{2}} C$ and \vec{p} is a circular motion In the drift frame with frequency, $\Omega=e B / m R^{2}$ and Larmor radius $p=v_{\perp} / \Omega$.
It is important to notice that the drift-velocity is the same for ions and electrons, being independent of mass and charge, but that the cyclotron frequencies and gyroradit are not. The electric field only accelerates particle parallel to 古 and because electrons respond so quickly it is difficult to maintain a constant E_{11}, except in a potential well geierated by a collection of (magnetically trapged) ions. He assume $E_{11}=0$ for the moment.
parameter, $0\left(\rho / L_{1}, \rho / L_{1 \prime}, \delta r^{-1}\right)$. We construct a transformation t. new variables (\mathbf{z}, ϕ) with $\underset{\underset{z}{2}}{\dot{z}}$ periodic in v and ϕ being an angle variable:

$$
\begin{align*}
& \vec{Z}(\vec{Y}, v)=Z\left(\vec{Y}, v+\tau_{0}\right) \tag{3.5}\\
& \phi\left(\vec{Y}, v+\tau_{0}\right)=\tau_{0}+\phi(\vec{Y}, v)
\end{align*}
$$

The equations for the drift variable $\{\vec{Z}, \varphi$) should not contain the angle variable which is to be averaged out:

$$
\begin{align*}
& \vec{z}_{\mathbf{t}}=\varepsilon \vec{h}(\vec{Z}) \tag{3.6}\\
& \phi_{\mathbf{t}}=1+\varepsilon \omega(\overrightarrow{\bar{z}})
\end{align*}
$$

The original equations (3.4) and the transformation give

$$
\begin{align*}
& \phi_{t}=E \underline{C} \cdot \phi_{y}+(1+E f) \phi_{V} \equiv 1+\varepsilon \omega \tag{3.7}
\end{align*}
$$

which can be integrated over v. We combine the equations into a single vector equation by setting $\vec{Z}=(\phi, \vec{Z}), \vec{H}=(\omega, \vec{H}), \vec{y}=(\nu, \vec{Y} ;$ and $G(\vec{y})=(f, \vec{g})$ and the integration, with boundary condition $\bar{z}(0)=\bar{\psi}$, gives

$$
\begin{equation*}
\vec{z}=\vec{y}+\varepsilon \int_{0}^{v} d v\left(A(\vec{Z})-\vec{E} \cdot \frac{\vec{z}_{\vec{Y}}}{\hat{Y}}\right) \tag{3.8}
\end{equation*}
$$

The condition that $\frac{1}{2}$ have no secular terns in v is that the average of the integrand vanish:

$$
\begin{equation*}
\int_{0}^{T_{0}} d v\left(\vec{H}-\vec{t} \cdot \tau_{\vec{t}}\right)=0 \tag{3.9}
\end{equation*}
$$

which will appear many times at this college, we can write down the result of applying this method to eliminating the gyrorotation from the equations of motion of a charged particle (3.1). These are the well known drift-equations: (Morozov and Soloviev, 1966).

$$
\begin{align*}
& \frac{d x}{d t}=v_{n} \frac{\vec{B}}{B}+\frac{c}{B^{2}}(E \times \vec{B})+\frac{m c v_{01}^{2}}{e B^{4}} \vec{B} \times(\vec{B} \cdot \nabla) \cdot \vec{B}+\frac{m C v_{L}^{2}}{2 e B^{3}} \vec{B} \times \nabla B \tag{3.13}\\
& \frac{d E}{d t}=e e^{\vec{E}} \cdot \frac{d X}{d t}+\frac{m v_{1}^{2}}{2 B} \frac{\partial B}{\partial t} \\
& \frac{d}{d t}\left(\frac{c_{m}^{2} v_{L}^{2}}{m_{0}^{2} B e}\right)=0 \equiv \frac{d \mu_{0}}{d t} \\
& \frac{d \phi}{d t}=\Omega
\end{align*}
$$

Where the entergy of the realivistic particle is $\varepsilon=m_{0} c^{3} f\left(c^{2}-v_{11}{ }^{2}+v_{1}{ }^{2}\right)^{1 / 2}$
 this order, the perpendicular veioelty is deternined by the constant af. the motton, the adiabatic invariant μ_{0}. When $\nabla \times \vec{B}=0$ the magnetic drifte are of the same form and we get

$$
\begin{equation*}
\frac{d \vec{X}}{d t}=v_{n 1} \frac{\vec{B}}{B}+\frac{G}{B^{2}}(\vec{E} \times \vec{B})+\frac{m C^{2}}{2 e B^{3}}(\vec{B} \times \nabla B)\left(2 v_{n}^{2}+v_{L}^{2}\right) \tag{3.14}
\end{equation*}
$$

One essential assumption in the derivation was that $E \ll B / C$. If we allow for a large drift-velocity, $\vec{v}_{E}=\frac{\vec{E} x \cdot \vec{B}}{B^{2}} c$ the equations; are modified to

$$
\begin{align*}
& \frac{d \vec{X}}{\delta t}=\vec{U}-\frac{m c}{e B^{2}}\left[\frac{\partial \vec{U}}{\partial t}+(\vec{U} \cdot \nabla) \cdot \vec{U}\right] \times \vec{B}+\frac{m c v_{u}^{2}}{2 e B^{3}} \vec{B} \times V B \tag{3.15}\\
& E=\left(\frac{m}{2} v_{u}^{2}+v_{L}^{2}+v_{E}^{2}\right), \quad \vec{U}=v_{N} \frac{\vec{B}}{B}+\vec{v}_{E}
\end{align*}
$$

The second tem in (3.15) is the drift due to the inertial effect of the large electric drift. These drift equations are very vseful in deterinining the dynamics of if plasma on time scales long compared with the cyclotron period. In some cases the drift equations themselves will desicribe a still
the particle in configuration space. Dne method for finding constants in less symetric situations is to transform the Hamiltonfan to mamentum coordinates which display the larmor angle. He could then seek a canonical transformation, as a power series in r_{1} / L, which would make the Hamiltonian independent of the new phase angle and hence the corresponding momentum would be a constant. Unfortunately, it would be expressed in tems of the averaged yariables and we would then have to find its expansion as a series in the original phase space coordinates.

We will denonstrate a differgnt formulation which is of general usefulness. Consider systens in which the particles execute closed orbits in the unperturbed system so the Hamiliontan can be reduced to

$$
\begin{equation*}
H=P_{1}+\operatorname{En}\left(q_{i}, p_{1}\right) \tag{4.2}
\end{equation*}
$$

where a is (almost') periodic in the angle coordinate q_{1}. Then we look for a constant of the motion J by solving the linear, partial differential equation

$$
\begin{equation*}
\frac{d J}{d t} \equiv[J, H]=0 \tag{4,3}
\end{equation*}
$$

where [J,H] is the Potsson bracket

$$
\begin{equation*}
[J, H] \equiv \sum_{i}\left(\frac{\partial J}{\partial P_{i}} \frac{\partial H}{\partial q_{i}}-\frac{\partial J}{\partial q_{i}} \frac{\partial H}{\partial P_{i}}\right) \tag{4.4}
\end{equation*}
$$

J is expanded as a power series, $\sum_{0}^{\infty} c^{u_{j}} u_{u}$, to give the recursion

$$
\begin{equation*}
\frac{\partial J_{0}}{\partial q_{1}}=0, \quad \frac{\partial J_{n}}{\partial q_{1}}=\left[J_{n-1}, R\right] \tag{4.5}
\end{equation*}
$$

The $\mathbf{n}^{\text {th }}$ equation is easily integrated,

$$
\begin{equation*}
s_{n}=\int\left[s_{n-1}, n\right] d q_{1}+a_{n} \tag{4.6}
\end{equation*}
$$

defined as

$$
\begin{equation*}
[\psi, f]=\lambda \frac{\partial f}{\partial q_{1}}+f(\psi, f) \tag{4.13}
\end{equation*}
$$

the result for a general oscillatory system is

$$
\begin{align*}
J= & P_{1}+\varepsilon\left(\frac{\Omega-\bar{\Omega}}{\lambda}\right)+c^{2}\left(\frac{1}{\lambda}\left\{\frac{\hat{\Omega}}{\lambda}, \psi\right\}+\left[\frac{1}{2 \lambda^{2}}, \frac{\hat{\Omega}^{2}}{2}\right]-\frac{1}{\lambda}\left[\frac{\bar{\Omega}}{\lambda}, \hat{\Omega}\right]\right. \\
& \left.-\frac{1}{\lambda} \frac{\partial}{\partial c t}\left(\frac{\hat{\Omega}}{\lambda}\right)+\frac{1}{2}\left[\frac{\hat{\lambda}}{\lambda}, \frac{\hat{\Omega}}{\lambda}\right]\right)+0\left(c^{3}\right) \tag{4.14}
\end{align*}
$$

As far as plasma theary is concerned we can regard the calculation of adiabatic invariants as being qolved. However, the Hamiltonian formulation is most inconvenient since H is a function of the potentials (A, ϕ) and not the fields (B, E). The atove method really only required the equation $[J, H]=0$ to be expressed in coordinates which disp?ay the phase angle over which we average. Hass, Hastie, and Taylor have applied the method to the Vlasov equation to generate the magnetic moment u, the longitudinal invariant J, and the flux invarient of given below. The algebra involved was formidable and the results are worth some comments.

A charged particle in a time independent electromagnetic field will have as constants of the motion the energy ε and the canonical monents corresponding to any symmetrics of the configuration. If there are no symetries then, in a strong magnetic field such that r_{L} / L \& 1 , the magnetic moment will be an adiabatic constant:

$$
\begin{equation*}
\mu=\mu_{0}+\frac{m}{e} u_{1}+0\left(\frac{r_{i}}{L}\right)^{2} \tag{4.15}
\end{equation*}
$$

where $u_{0}=v_{\Delta}^{2} / 2 B$

$$
\mu_{1}=-\frac{1}{B}\left[\vec{V}_{L} \cdot \vec{H}_{0}+\frac{\vec{V} \cdot b}{4}\left\{\vec{V}_{L}-(\vec{a} \cdot \nabla) \vec{b}+\vec{a} \cdot\left(\vec{V}_{4} \cdot \nabla\right) \vec{b}+4_{H_{0}} \cdot \vec{b} \cdot \nabla \times \vec{b}\right\}\right]
$$

and

$$
W_{0}=\frac{\vec{d}}{B^{2}} \times\left(Y_{u}^{2} \vec{b}+\mu v B\right), \quad \vec{a}=\frac{\vec{v} \times \stackrel{\rightharpoonup}{B}}{B^{2}}
$$

in phase space which always passes through the same trajectorite:

$$
\begin{equation*}
\phi=\iint_{C} B_{2} d x d y, \quad J=\oint \text { pdq } \tag{5.1}
\end{equation*}
$$

This suggests that a magnetic field might be described in canonical coordinates

$$
\begin{equation*}
p \equiv \int_{i}^{y} B_{z} d y=\theta_{z}^{\dagger}, \quad q \equiv x, \quad t \equiv z \tag{5.2}
\end{equation*}
$$

The Hamiltonian may be found from the equations of motion

$$
\begin{equation*}
-\frac{\partial H}{\partial q}=\frac{d p}{d t}, \quad \frac{\partial H}{\partial p}=\frac{d q}{d t} \equiv \frac{d x}{d z}=\frac{B_{x}}{B_{z}} \tag{5.3}
\end{equation*}
$$

and the constraint $\nabla \cdot \vec{B}=0$. It turns out that we need to separate the riela component $B_{y}=B_{y 1}(x, y, z)+B_{y 2}(x, z)$ to correctly choose the constants of integration when solving for H :

$$
\begin{equation*}
H=\int^{y} B_{x} d y-\int^{x} B_{y z} d x \equiv B_{x}^{+}-B_{y}^{*} \tag{6.4}
\end{equation*}
$$

As a simple example, we can now apply the hamiltonian formaliam to a stellarator field which we write as

$$
\begin{equation*}
\vec{\theta}=B_{0} \hat{z}+\epsilon \vec{b}_{1}(x, y, z, \varepsilon) \tag{5.5}
\end{equation*}
$$

where the field is principaliy in the z direction ($\hat{z}-$ unit vector) and $\vec{b}_{\hat{y}}$ is periodic in z and may be further expandable in ε. The momentum and Hamiltoniar are

$$
\begin{equation*}
p=B_{0} y+\varepsilon b_{z}^{+}, H=\varepsilon b_{x}^{+}-\varepsilon b_{y}^{*} \equiv \varepsilon h \tag{5.6}
\end{equation*}
$$

We seek an atiabatic invariant ψ to describe the magnetic surfaces by solving the Hamiltonian form of $\overline{\mathrm{E}} . \nabla_{\psi}=0$, namely,

$$
\begin{equation*}
\frac{d \psi}{d t}=0=\frac{\partial \psi}{\partial t}+\varepsilon[h . \psi] \tag{5.7}
\end{equation*}
$$

where $\Omega=$ eb/mc and ϕ_{0} is the wave amplitude. This is first transfomed to the action-angle coordinates of the gyromotion, $P_{\phi}=m v_{\perp}{ }^{2} / 2 \Omega$, with gyroradius $\rho=\left(2 P_{\phi} / m\right)^{1 / 2}:$

$$
\begin{equation*}
H=p_{2}{ }^{2} / 2 \pi+\Omega P_{\phi}+e \phi_{0} \sin \left(k z-k_{\perp} \rho \sin \phi\right) \tag{6.2}
\end{equation*}
$$

In the case of propagation at $45^{\circ}\left(k=k_{\perp}\right)$, the Hamiltonian may be gen:dimensfonalized and, using a Bessel function identity, becones

$$
\begin{equation*}
H=\rho_{\phi}+\frac{p^{2}}{2}+\varepsilon \sum J_{1}(p) \sin (z-e \phi) \equiv H_{0}+E H_{1} \tag{6,3}
\end{equation*}
$$

The recurrence relations in (4.5) for an ifivariant I become

$$
\begin{equation*}
\frac{\partial I_{0}}{\partial \phi}+P \frac{\partial I_{\theta}}{\partial z}=0, \quad \frac{\partial I_{n}}{\partial \phi}+P \frac{\partial I_{n}}{\partial z}=\left[H_{1}, I_{n-1}\right] \tag{6.4}
\end{equation*}
$$

observe thet the zeroth order orbit depends on p :
The solution to $O(\varepsilon)$ of (6.4) is

$$
\begin{equation*}
I_{0}+\varepsilon I_{1}=I_{0}(p)+\epsilon \frac{d I_{0}}{d p} \sum J_{L}(p) \quad \frac{\sin (z-\infty)}{p-L} \tag{6,5}
\end{equation*}
$$

The expansion clearly fails at every integral resonance $P=\ell$ unless I_{0} is chosen to yanish in the same way at each resonance. An appropriate choice is $L_{0}=\cos (\pi F) / \pi$;

$$
\begin{equation*}
I_{0}+E I_{1}=\pi^{-1} \cos (\pi p)-\varepsilon \sin (\pi p) \sum, J_{L} \frac{\sin (z-L \phi)}{(P-L)} \tag{6.6}
\end{equation*}
$$

This invariant is shown in Figs. $(2,3)$ in the plane $\phi=\pi$ for two values of ε and $\rho=\left(1.48^{2}-p^{2}\right)^{1 / 2}$. We observe that resonances at $p=0,1$ overlap strongly in the second case.

These curves can nou be compared with the numerical orbit ealculations of Snith and Kaufman, Figs. $(4,5)$, at the same parameter values. The orbits are plotted as they intersect the plane $\phi=\pi$ and, when the points lie on snooth curve it is clear that the invariant is a good one. In Fig. 5 the
$\bar{H} \approx \psi+\varepsilon \bar{n}+\frac{5 P_{2}^{2}}{2}\left(\frac{\partial^{2} \psi}{\partial P_{2}^{2}}+\varepsilon \frac{\partial^{2} \bar{\Omega}}{\partial P_{2}^{2}}\right)+\varepsilon \frac{\delta Q_{2}^{2}}{2} \frac{\partial^{2} \bar{\Omega}}{\partial \eta_{2}^{2}}+0\left(\delta^{3}\right)$

The frequency of the drift in the $P_{2} Q_{2}$ plane is now $O(V C)$ and R is also $0(\sqrt{\varepsilon})$. This resonates more readily with the fundamental and it is the overiap of these secondary islands, in either case, which leads to the stochastic behavior. The criterion used by Smith and Kaufman, based on overlap of the primary resonances is not accurate and their computations clearly show a secondary chain of five islands around one of the fixed points. The start of the required transformations nust be done with the usual generating function approach:

$$
\begin{equation*}
S=S\left(P_{\mathrm{odd}}, Q\right)=-P_{\phi Q_{\theta}}-\frac{Q_{x}}{\pi} \cos \pi p \tag{5.13}
\end{equation*}
$$

so that

$$
H=P_{\theta}+\frac{1}{2}\left(\cos ^{-1} \pi P_{x}\right)^{2}+E J_{L}(p) \sin \left(q_{x} \sqrt{1-\pi^{2} P_{x}^{2}}-p \phi\right)
$$

which makes $P_{x}=A \cos \pi P$ the leading order invariant in the new coordinates. I have not carried out the rest of the analysis of this case, but this shows how to bring together the elements of the modern theory, daejer et al. have applied the theory to electron cyclotron resonance heating in tirror machines. They shaw that, as the electron energy increases, the high order (5th) resonance of the bounce motion with the cyclotron heating breaks up the invariant surfaces and places an upper limit on the attainable electron energy.

1. Jumps in Adiabatic Invariants

The question arises as to whether the adiabatic invariant series are approximations to some true constant or whether they are merely approximate constants. In fustion piasmas we certainly want to contain the particles unch longer than a few hundred cyclotron periods and the question of the convergence

The phases ψ, ψ_{J} are rotating rapidly at the gyrofrequency and the integral is close to zero. A more careful analysis is done by deforming the path of integration S ilion the complex plane to pick up the residues around the zeroes of B. The details vary for each plasma configuration and so we will display the results for a finite $\& \in(B)$ equilibrium in a mirror machine when it can be shown that

$$
\begin{equation*}
\nabla x y(B) B=0, \quad \rho_{J}=\rho_{1} \frac{B}{y} \frac{\partial y}{\partial B} \tag{7.4}
\end{equation*}
$$

The field can then be expanded about the $j^{\text {th }}$ zero in the complex S plane in the form

$$
\begin{equation*}
B=B_{j} E^{\nu}\left(\psi-\psi_{j}\right)^{\nu}, \quad \varepsilon=\frac{V}{M}, L=\left(28 / \frac{\partial^{2} B}{\partial S^{2}}\right)^{1 / 2} \tag{7.5}
\end{equation*}
$$

and the general result is

$$
\frac{\Delta \mu_{0}}{\mu_{n}}=\frac{4 \pi}{y} \sum_{j} \frac{v \varepsilon}{\Gamma\left(\frac{v}{2}+1\right)} \operatorname{Re}\left[\left(\frac{\delta_{0}}{8_{j}}\right)^{1 / 2}\left(1+\frac{\Delta y^{\prime}}{y}\right)_{j} e^{1\left(\psi_{0}+v \frac{\pi}{4}\right)} e^{-x_{j} / \varepsilon}\right] \cdot(7.6)
$$

where

$$
\begin{equation*}
x_{j}=-i \int_{s=0}^{s_{j}} \frac{8}{\left[\theta_{0}\right.} \frac{d s}{v_{t}}+I \varepsilon \int_{0}^{s_{j}} d s \hat{e}_{i} \cdot \frac{\partial \hat{e}_{2}}{\partial s} \tag{7.7}
\end{equation*}
$$

These small jumps in u_{0} can lead to a diffusion in velocity space and rapid loss of containment for the most energetic particles. The maximum energy particle which can be contained "is a mirror machine has

$$
\begin{equation*}
W_{\max }=\frac{10^{-3} k^{2} R_{1}^{2} L^{2} z^{2}}{M\left(1-.0362 n A_{0}\right)^{2}} \quad \text { kev. } \tag{7.8}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{0}=\frac{H}{2}\left(\frac{50 \mathrm{keV}}{\mathrm{H}}\right)\left[\frac{L}{170 \mathrm{~cm}} \frac{.5 \mathrm{v}}{\left\langle V_{n}\right\rangle_{\text {bounce }}} \frac{10^{-2} \operatorname{secs}}{\tau}\right]^{2}\left[\frac{15(1-R)}{H}\left(\frac{y_{1}}{V}\right)_{c} \frac{1}{83<\cos \psi{ }_{\mathrm{msc}}}\right]^{4} \tag{7.9}
\end{equation*}
$$

where V_{n} is the parallel veiocity at $s=0$. The change in $\delta \downarrow$ between bounces is then

$$
\begin{equation*}
\Delta \psi=\int\left(n-\Omega_{0}\right) d t=2 \int_{0}^{x} \max \frac{\Omega_{0}\left(s^{2} / L^{2}\right)_{d s}}{\left(V_{u}^{2}-2 \mu B_{0} s^{2} / L^{2}\right)^{1 / 2}}=\left(\frac{L}{\rho_{i}}\right) \frac{\pi V_{1}^{3}}{\left(2 \mu B_{0}\right)^{3 / 2}} \tag{8,4}
\end{equation*}
$$

Expressing μB_{0} in units of $v_{n}^{2} / 2$ the phase change between bounces is

$$
\begin{equation*}
\psi_{n+1}=\psi_{n}+\left(\frac{L}{\rho}\right) \frac{\pi}{3 / 2} \tag{8.5}
\end{equation*}
$$

There are clearly mi..y fixed points of the mapping (8.1), (8.5) whenever $\mu_{n+1}=\mu_{n}=(L / N)^{2 / 3}, \psi_{n+1}=\psi_{n}+m \pi$. Let us linearize the motion about one such point, $\psi_{n c}=\psi_{F}+\delta \psi_{n}=\mu_{u}=\mu_{F}+\delta \mu_{n}$ to get

$$
\begin{align*}
& \delta \mu_{n+1}=\delta \mu_{n}+\alpha \delta \psi_{n} \\
& \delta \psi_{n+1}=\delta \psi_{n}=\frac{3}{2}\left(\frac{L}{o u_{F}^{5 / 2}}\right) \delta \mu_{n+1}
\end{align*}
$$

Eliminating $\delta \psi_{n}$ gives

$$
\begin{equation*}
\delta \mu_{n+1}-\left(2-\frac{\alpha 3}{2}\left(\frac{L}{\rho \mu_{F}^{5 / 2}}\right)\right) \delta \mu_{n}+\delta \mu_{n-1}=0 \tag{8.7}
\end{equation*}
$$

and we look for solutions of the form $\quad \delta \mu_{n} \sim \lambda^{n}$: for stability $|2| \leq 1$ which gives

$$
\begin{equation*}
a<\frac{2}{3}\left(\frac{\mathrm{~L}}{\mathrm{\rho}}\right)^{2 / 3} \mathrm{~m}^{-5 / 3} \tag{8.8}
\end{equation*}
$$

2. Atomic Cross Sections

C. A. Finan, UCRL-51905 (1976).
C. F. Barnett, Controlled Fusion Data Center, Oak Ridge Nat. Lab., P. O. Box X, Bldg. 6003, Dak Ridge, iN 37830.

3. Charged Particle Motion

B. Mchamara, K. J. Whiteman, J. Math. Phys., 8, 10. 2029-2038, (1967).
A. Deprit, J. Celestial Mech. , 1, 12-30 (1969).
A. Hayfeh, Perturbation Methods, Wiley a Sons (1973).

Morozov and Solovey
4. Adfabatic Invariants
K. J. Whiteman; B. McMamara, J. Math. Phys. 9, 9, 1385-1389 (1968).
R. J. Hastie, J. B. Taylor, F. A. Haas, Annals of Physics, 41, 302-338 (1962),
E. Nagnetic Surfaces
A. Gibson, Phys. Fluids, 10. 7, 1553-1560 (1967).
H. N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor, 6. M. Zaslavski, Nuctear Fusiọn 6, 297-300 (1965). Destruction of Magnetic Surfaces by Magnetic Field Irregularities.
6. Resonant Effects
J. B. Taylor, E. W. Laing, Phys. Rev. Lett. . $35,19,1306-1309$ (1975).
G. Smith, A. N. Kaufman, Phys. Rev. Lett., 34, 26, 161 's 1616 (1975).
E. F. Jaeger, A. J. Lichteaberg, Ann. Phys., 71, 2, 319-355. (1972).
D. A. Dunnett, E. W. Laing, Plasma Phys. 8, 399-411 (1966). Stochastic Motion of Particles in a Hon-adiabatic Magnetic Trap.

FIG. 1 Intersection of angnetic field lines with radial planes, at fleld period intervals, in a coroidal $L=3$ Stellarator. There are B field periods around the torus and the numbers indicate revolutions about the major axis. The splitting of the axis arises from a small $\mathrm{L}=$ i field component due to the helfcal windings. The fiyure is taken from A. Gibson. (1967).

FIG. 3 Surface of section plot at $c=1$. Primary وesomances

FIG. S Surface of section of orbits shows breakup of prisury resonances and fomation of ny 5 secondary resonances at c. .l. Smith and Kaufman (1976).

[^0]: Worl periammed under the suapies of the US. Department of Energy by the Lawreace Litermurp Labutalary umder sontract number
 W. 7405 ENG

